

DPP No. : 1

 An electron of mass 'm', when accelerated through a potential V has de-Broglie wavelength λ. The de-Broglie wavelength associated with a proton of mass M accelerated through the same potential difference will be:

(1) $\lambda \sqrt{\frac{M}{m}}$ (2) $\lambda \sqrt{\frac{m}{M}}$ (3) $\lambda \left(\frac{M}{m}\right)$ (4) $\lambda \left(\frac{m}{M}\right)$

- Two hydrogen atoms are in excited state with electrons residing in n = 2. First one is moving towards left and emits a photon of energy E₁ towards right. Second one is moving towards left with same speed and emits a photon of energy E₂ towards left. Taking recoil of nucleus into account during emission process

 (1) E₁ > E₂
 (2) E₁ < E₂
 (3) E₁ = E₂
 (4) information insufficient
- 3. Consider atoms H, He⁺, Li⁺⁺ in their ground states. If L₁, L₂ and L₃ are magnitude of angular momentum of their electrons about the nucleus respectively then :

(1) $L_1 = L_2 = L_3$ (2) $L_1 > L_2 > L_3$ (3) $L_1 < L_2 < L_3$ (4) $L_1 = L_2 = L_3$

4. The voltage applied to an X-ray tube is 18 kV. The maximum mass of photon emitted by the X-ray tube will be:

```
(1) 2 \times 10^{-13} kg (2) 3.2 \times 10^{-36} kg (3) 3.2 \times 10^{-32} kg (4) 9.1 \times 10^{-31} kg
```

5. When a metallic surface is illuminated with monochromatic light of wavelength λ , the stopping potential is 5 V₀. When the same surface is illuminated with light of wavelength 3λ , the stopping potential is V₀. Then the work function of the metallic surface is :

(1)
$$\frac{hc}{6\lambda}$$
 (2) $\frac{hc}{5\lambda}$ (3) $\frac{hc}{4\lambda}$ (4) $\frac{2hc}{4\lambda}$

6. The energy difference between the first two levels of hydrogen atom is 10.2 eV. What is the corresponding energy difference for a singly ionized helium atom ?

(1) 10.2 eV (2) 20.4 eV (3) 40.8 eV (4) 81.6 eV

SARANSH | PHYSICS

- 7. If the binding energy of the electron in a hydrogen atom is 13.6 eV, the energy required to remove the electron from the first excited state of Li²⁺ is :
 - (1) 30.6 eV (2) 13.6 eV (3) 13.6 eV (4) 122.4 eV
- **8.** Consider a hypothetical annihilation of a stationary electron with a stationary positron. What is the wavelength of resulting radiation.
 - (1) $\frac{h}{2m_0c}$ (2) $\frac{h}{m_0c}$ (3) $\frac{2h}{m_0c}$ (4) $\frac{h}{m_0c^2}$

(h = Plank's constant, c = speed of light, m_0 = rest mass)

9. Photoelectric effect can be explained by assuming that light

(1) is a form of transverse waves	(2) is a form of longitudinal waves
(3) can be polarised	(4) consists of quanta

10. The ratio of deBroglie wavelengths of a proton and an alpha particle of same energy is .

	(1) 1	(2) 2	(3) 4	(4) 0.25
--	-------	-------	-------	----------

