

Course : SARANSH (Youtube Live CRASH COURSE)

## PHYSICS: MODERN PHYSICS

## DPP No. : 2

1. The ratio of de Broglie wavelengths of a proton and a neutron moving with the same velocity is nearly
(1) 1
(2) $\sqrt{2}$
(3) $1 / \sqrt{2}$
(4) none of the above
2. Two particles have identical charges. If they are accelerated through identical potential differences, then the ratio of their deBroglie wavelength would be
(1) $\lambda_{1}: \lambda_{2}=1: 1$
(2) $\lambda_{1}: \lambda_{2}=m_{2}: m_{1}$
(3) $\lambda_{1}: \lambda_{2}=\sqrt{m_{2}}: \sqrt{m_{1}}$
(4) $\lambda_{1}: \lambda_{2}=\sqrt{m_{1}}: \sqrt{m_{2}}$
3. If $\mathrm{a}_{0}$ is the Bohr radius, the radius of the $\mathrm{n}=2$ electronic orbit in triply ionized beryllium is -
(1) $4 \mathrm{a}_{0}$
(2) $\mathrm{a}_{0}$
(3) $a_{0} / 4$
(4) $a_{0} / 16$
4. In Bohr's model of hydrogen atom, the centripetal force is provided by the Coulomb attraction between the proton and the electron. If $a_{0}$ is the radius of the ground state orbit, $m$ is the mass and $e$ the charge of an electron and $\varepsilon_{0}$ is the vacuum permittivity, the speed of the electron is :
(1) zero
(2) $\frac{\mathrm{e}}{\sqrt{\varepsilon_{0} \mathrm{a}_{0} \mathrm{~m}}}$
(3) $\frac{\mathrm{e}}{\sqrt{4 \pi \varepsilon_{0} \mathrm{a}_{0} \mathrm{~m}}}$
(4) $\frac{\sqrt{4 \pi \varepsilon_{0} \mathrm{a}_{0} m}}{\mathrm{e}}$
5. If an orbital electron of the hydrogen atom jumps from the ground state to a higher energy state, its orbital speed reduces to half its initial value. If the radius of the electron orbit in the ground state is $r$, then the radius of the new orbit would be :
(1) $2 r$
(2) 4 r
(3) 8 r
(4) $16 r$
6. Three photons coming from excited atomic-hydrogen sample are picked up. Their energies are 12.1 eV , 10.2 eV and 1.9 eV . These photons must come from
(1) a single atom
(2) two atoms
(3) three atom
(4) either two atoms or three atoms

|  | Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, |  |
| :---: | :---: | :---: |
|  | Website: www.resonance.ac.in \| E-mail: contact@resonance.ac.in | PAGE NO.-1 |
|  | Toll Free : \| 18002585555 | CIN: U80302RJ2007PLC024029 |  |

7. The graph between the square root of the frequency of a specific line of characteristic spectrum of $X$-rays and the atomic number of the target will be
(1)

(2)

(3)

(4)

8. The de Broglie wavelength of an electron moving with a velocity $1.5 \times 10^{8} \mathrm{~ms}^{-1}$ is equal to that of a photon. The ratio of the kinetic energy of the electron to that of the energy of photon is :
(1) 2
(2) 4
(3) $\frac{1}{2}$
(4) $\frac{1}{4}$
9. Let $p$ and $E$ denote the linear momentum and the energy of a photon. For another photon of smaller wavelength (in same medium)
(1) both $p$ and $E$ increase
(2) $p$ increases and $E$ decreases
(3) $p$ decreases and $E$ increases
(4) both $p$ and $E$ decreases
10. Two separate monochromatic light beams $A$ and $B$ of the same intensity (energy per unit area per unit time) are falling normally on a unit area of a metallic surface. Their wavelength are $\lambda_{A}$ and $\lambda_{B}$ respectively. Assuming that all the incident light is used in ejecting the photoelectrons, the ratio of the number of photoelectrons from beam $A$ to that from $B$ is
(1) $\left(\frac{\lambda_{A}}{\lambda_{B}}\right)$
(2) $\left(\frac{\lambda_{B}}{\lambda_{A}}\right)$
(3) $\left(\frac{\lambda_{A}}{\lambda_{B}}\right)^{2}$
(4) $\left(\frac{\lambda_{B}}{\lambda_{A}}\right)^{2}$
