SARANSH | PHYSICS

TARGET : NEET (UG) 2024

PHYSICS DPPP DAILY PRACTICE PROBLEMS DPP NO. 2

Course : SARANSH (Youtube Live CRASH COURSE)

PHYSICS: NUCLEAR PHYSICS

DPP No. : 2

1.	When a β^- -particle is er (1) is decreased	nitted from a nucleus, the (2) is increased	e neutron-proton ratio : (3) remains the same	(4) first (A) then (B)
2.	The energy equivalent of 1 kilogram of matter is about			
	(1) 10 ⁻¹⁵ J	(2) 1 J	(3) 10 ⁻¹² J	(4) 10 ¹⁷ J
3.	In helium nucleus, there are (1) 2 protons and 2 electrons (2) 2 neutrons, 2 protons and 2 electrons (3) 2 protons and 2 neutrons (4) 2 positrons and 2 protons			
4.	If the mass number of number of neutrons and (1) 22, 18	an atom is A =40 and i d protons in its nucleus w (2) 18, 22	its electron configuratior /ill be (3) 20, 20	is 1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , the (4) 18, 18
5.	α – particles of energy 400 KeV are bombarded on nucleus of ₈₂ Pb. In scattering of α – particles, its minimum distance from nucleus will be (1) 0.59 nm (2) 0.59 Å (3) 5.9 pm (4) 0.59 pm			
6.	A heavy nucleus at rest breaks into two fragments which fly off with velocities in the ratio 8 : 1. The ratio of radii of the fragments is			
	(1) 1 : 2	(2) 1 : 4	(3) 4 : 1	(4) 2:1
7.	For uranium nucleus how does its mass vary with volume			
	(1) $\mathbf{m} \propto \mathbf{V}$	(2) m ∞ 1⁄V	(3) m ∝ √V	(4) m∝V ²
8.	Which of the following p (1) Protons and electron (3) Neutrons and electron	particles are constituents ns ons	of the nucleus (2) Protons and neutrons (4) Neutrons and positrons	
9.	Radius of ⁴ ₂ Henucleus (1) 5 Fermi	is 3 Fermi. The radius of (2) 6 Fermi	$3 \rightarrow 2$ nucleus will be (3) 11.16 Fermi	(4) 8 Fermi
10.	The sodium nucleus ²³ (1) 11 electrons	Na contains (2) 12 protons	(3) 23 protons	(4) 12 neutrons

