$\leadsto \overbrace{\text { Educating for better tomorrow }}$
 TARGET : NEET (UG) 2024

Course : SARANSH (Youtube Live CRASH COURSE)

PHYSICS: PROJECTILE MOTION

DPP No. : 1

1. At the top of the trajectory of a projectile, the directions of its velocity and acceleration are'
(1) Perpendicular to each other
(2) Parallel to each other
(3) Inclined to each other at an angle of 45°
(4) Antiparallel to each other
2. A partical A is projected with speed V_{A} from a point making an angle 60° with the horizontal. At the same instant, a second particle B is thrown vertically upwards from a point directly below the maximum height point of parabolic path of A, with velocity V_{B}. If the two particles collide then the ratio of V_{A} / V_{B} should be;
(1) 1
(2) $2 / \sqrt{3}$
(3) $\sqrt{3} / 2$
(4) $\sqrt{3}$
3. An object is thrown from a point ' A ' horizontally from a tower and hits the ground 3 s later at B. The line from ' A ' to ' B ' makes an angle of 30° with the horizontal. The initial velocity of the object is: (take $\mathrm{g}=10$ $\mathrm{m} / \mathrm{s}^{2}$)

(1) $15 \sqrt{3} \mathrm{~m} / \mathrm{s}$
(2) $15 \mathrm{~m} / \mathrm{s}$
(3) $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$
(4) $25 / \sqrt{3} \mathrm{~m} / \mathrm{s}$
4. A particle is projected up the inclined such that its component of velocity along the incline is $10 \mathrm{~m} / \mathrm{s}$. Time of flight is 2 sec and maximum height above the incline is 5 m . Then velocity of projection will be: एक
(1) $10 \mathrm{~m} / \mathrm{s}$
(2) $10 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(3) $5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
(4) none of these
5. A stone projected at angle ' θ ' with horizontal from the roof of a tall building falls on the ground after three second. Two second after the projection it was again at the level of projection. Then the height of the building is -
(1) 5 m
(2) 25 m
(3) 20 m
(4) 15 m

6. A stone projected at angle 53° attains maximum height 25 m during its motion in air. Then its distance from the point of projection where it will fall is -
(1) 75 m
(2) $\frac{400}{3} \mathrm{~m}$
(3) 50 m
(4) 60 m
7. A particle is projected with speed $10 \mathrm{~m} / \mathrm{s}$ at angle 60° with the horizontal. Then the time after which its speed becomes half of initial -
(1) $\frac{1}{2} \mathrm{sec}$.
(2) 1 sec .
(3) $\sqrt{3 / 2}$ sec.
(4) $\sqrt{3} / 2 \mathrm{sec}$.
8. A projectile can have the same range R for two angles of projection. If T_{1} and T_{2} be the time of flights in the two cases, then the product of the two times of flights is directly proportional to :
(1) $1 / R^{2}$
(2) $1 / R$
(3) R
(4) R^{2}
9. A ball is thrown from a point with a speed v_{0} at angle of projection θ. From the same point and at the same instant, a person starts running with a constant speed $v_{0} / 2$ to catch the ball? If yes, what should be the angle of projection?
(1) Yes, 60°

(3) No
(4) Yes, 45º
10. It was calculated that a shell when fired from a gun with a certain velocity and at an angle of elevation $\frac{5 \pi}{36}$ rad should strike a given target in the same horizontal plane. In actual practice, it was found that a hill just prevented the trajectory. At what angle of elevation should the gun be fired to hit the target.
(1) $\frac{5 \pi}{36} \mathrm{rad}$
(2) $\frac{11 \pi}{36} \mathrm{rad}$
(3) $\frac{7 \pi}{36} \mathrm{rad}$
(4) $\frac{13 \pi}{36} \mathrm{rad}$.
