ЛResonance Educating for better tomorrow TARGET : NEET (UG) 2024

Course : SARANSH (Youtube Live CRASH COURSE)

PHYSICS: RECTILINEAR MOTION

DPP No. : 1

1. The acceleration of a particle is increasing linearly with time t as bt. The particle starts from the origin with an initial velocity v_{o}. The distance travelled by the particle in time t will be
(1) $v_{0} t+\frac{1}{3} b t^{2}$
(2) $v_{0} t+\frac{1}{3} b t^{3}$
(3) $v_{0} t+\frac{1}{6} b t^{3}$
(4) $v_{0} t+\frac{1}{2} b t^{2}$
2. A clock has a minute-hand 10 cm long. Find the average velocity between 6.00 AM to 6.30 AM for the tip of minute-hand.
(1) $\frac{22}{21} \mathrm{~cm} \mathrm{~min}^{-1}$
(2) $\frac{2}{21} \mathrm{~cm} \mathrm{~min}^{-1}$
(3) $\frac{12}{21} \mathrm{~cm} \mathrm{~min}^{-1}$
(4) $\frac{2}{3} \mathrm{~cm} \mathrm{~min}^{-1}$
3. A particle is moving in a circle of radius r with speed v as shown in the figure. The magnitude of change in velocity in moving from P to Q is :

(1) $2 v \cos 40^{\circ}$
(2) $2 v \sin 20^{\circ}$
(3) $2 v \cos 20^{\circ}$
(4) None of these
4. A stone is dropped from the top of a tower. When it has fallen by 5 m from the top, another stone is dropped from a point 25 m below the top. If both stones reach the ground at the same moment, then height of the tower from ground is: (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1) 45 m
(2) 50 m
(3) 60 m
(4) 65 m
5. For a particle moving in a straight line, the displacement of the particle at time t is given by

$$
S=t^{3}-6 t^{2}+3 t+7
$$

What is the velocity of the particle when its acceleration is zero?
(1) $-9 \mathrm{~m} \mathrm{~s}^{-1}$
(2) $-12 \mathrm{~m} \mathrm{~s}^{-1}$
(3) $3 \mathrm{~m} \mathrm{~s}^{-1}$
(4) $42 \mathrm{~m} \mathrm{~s}^{-1}$
6. A stone is thrown vertically upward with an initial speed u from the top of a tower, reaches the ground with a speed $3 u$. The height of the tower is:
(1) $\frac{3 u^{2}}{g}$
(2) $\frac{4 u^{2}}{g}$
(3) $\frac{6 u^{2}}{g}$
(4) $\frac{9 u^{2}}{g}$

Excelling in IIT-JEE Since 2001...	Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005		
	Website: www.resonance.ac.in E-mail: contact@resonance.ac.in	PAGE NO.-1	
	Toll Free : \| 18002585555	CIN: U80302RJ2007PLC024029	

7. A body covers first $\frac{1}{3}$ part of its journey with a velocity of $2 \mathrm{~m} / \mathrm{s}$, next $\frac{1}{3}$ part with a velocity of $3 \mathrm{~m} / \mathrm{s}$ and rest of the journey with a velocity $6 \mathrm{~m} / \mathrm{s}$. The average velocity of the body will be
(1) $3 \mathrm{~m} / \mathrm{s}$
(2) $\frac{11}{3} \mathrm{~m} / \mathrm{s}$
(3) $\frac{8}{3} \mathrm{~m} / \mathrm{s}$
(4) $\frac{4}{3} \mathrm{~m} / \mathrm{s}$
8. A body covered a distance of $L \mathrm{~m}$ along a curved path of a quarter circle. The ratio of distance to displacement is
(1) $\frac{\pi}{2 \sqrt{2}}$
(2) $\frac{2 \sqrt{2}}{\pi}$
(3) $\frac{\pi}{\sqrt{2}}$
(4) $\frac{\sqrt{2}}{\pi}$
9. A truck travelling due to North at $20 \mathrm{~m} / \mathrm{s}$ turns East and travels at the same speed. The change in its velocity is
(1) $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ North - East
(2) $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ South - East
(3) $40 \sqrt{2} \mathrm{~m} / \mathrm{s}$ North - East
(4) $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ North - West
10. A car travels a distance of 2000 m . If the first half distance is covered at $40 \mathrm{~km} / \mathrm{hour}$ and the second half at velocity v and if the average velocity is $48 \mathrm{~km} /$ hour then the value of v is
(1) $56 \mathrm{~km} / \mathrm{hour}$
(2) $60 \mathrm{~km} / \mathrm{hour}$
(3) $50 \mathrm{~km} /$ hour
(4) $48 \mathrm{~km} / \mathrm{hour}$
11. A particle is moving with velocity $5 \mathrm{~m} / \mathrm{s}$ towards east and its velocity changes to $5 \mathrm{~m} / \mathrm{s}$ north in 10 sec . Find the acceleration.
(1) $\sqrt{2} \mathrm{~N}-\mathrm{W}$
(2) $\frac{1}{\sqrt{2}} N-W$
(3) $\frac{1}{\sqrt{2}} N-E$
(4) $\sqrt{2} N-E$
12. The variation of velocity of a particle moving along straight line is shown in figure. The distance traversed by the body in 4 seconds is

(1) 70 m
(2) 60 m
(3) 40 m
(4) 55 m
13. A particle moves with constant acceleration for 6 seconds after starting from rest. The distance travelled during the consecutive 2 seconds interval are in the ratio
(1) $1: 1: 1$
(2) $1: 2: 3$
(3) $1: 3: 5$
(4) $1: 5: 9$
14. Two bodies of different masses m_{a} and m_{b} are dropped from two different heights, viz a and b. The ratio of times taken by the two to drop through these distance is
(1) $a: b$
(2) $\frac{m_{a}}{m_{b}}: \frac{b}{a}$
(3) $\sqrt{a}: \sqrt{b}$
(4) $a^{2}: b^{2}$
