

PHYSICS: RECTILINEAR MOTION

DPP No. : 1

1. The acceleration of a particle is increasing linearly with time t as bt. The particle starts from the origin with an initial velocity v_0 . The distance travelled by the particle in time t will be

(1)
$$v_0 t + \frac{1}{3} b t^2$$
 (2) $v_0 t + \frac{1}{3} b t^3$ (3) $v_0 t + \frac{1}{6} b t^3$ (4) $v_0 t + \frac{1}{2} b t^2$

- 2. A clock has a minute-hand 10 cm long. Find the average velocity between 6.00 AM to 6.30 AM for the tip of minute-hand.
 - (1) $\frac{22}{21}$ cm min⁻¹ (2) $\frac{2}{21}$ cm min⁻¹ (3) $\frac{12}{21}$ cm min⁻¹ (4) $\frac{2}{3}$ cm min⁻¹
- **3.** A particle is moving in a circle of radius r with speed v as shown in the figure. The magnitude of change in velocity in moving from P to Q is :

- (1) 2 v cos 40° (3) 2 v cos 20°
- 4. A stone is dropped from the top of a tower. When it has fallen by 5m from the top, another stone is dropped from a point 25m below the top. If both stones reach the ground at the same moment, then height of the tower from ground is : (take $g = 10m/s^2$) (1) 45 m (2) 50m (3) 60m (4) 65m
- 5. For a particle moving in a straight line, the displacement of the particle at time t is given by $S = t^{3} - 6t^{2} + 3t + 7$ What is the velocity of the particle when its acceleration is zero? (1) - 9 m s⁻¹
 (2) - 12 m s⁻¹
 (3) 3 m s⁻¹
 (4) 42 m s⁻¹
- **6.** A stone is thrown vertically upward with an initial speed u from the top of a tower, reaches the ground with a speed 3u. The height of the tower is:

(1)
$$\frac{3u^2}{g}$$
 (2) $\frac{4u^2}{g}$
(3) $\frac{6u^2}{g}$ (4) $\frac{9u^2}{g}$

Excelling in IIT-JEE Since 2001	Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005	
	Website: www.resonance.ac.in E-mail: contact@resonance.ac.in	BACENO 1
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	FAGE NO1

SARANSH | PHYSICS

7. A body covers first $\frac{1}{3}$ part of its journey with a velocity of 2 m/s, next $\frac{1}{3}$ part with a velocity of 3 m/s and rest of the journey with a velocity 6m/s. The average velocity of the body will be

(1) 3 m/s (2)
$$\frac{11}{3}$$
 m/s (3) $\frac{8}{3}$ m/s (4) $\frac{4}{3}$ m/s

8. A body covered a distance of L m along a curved path of a quarter circle. The ratio of distance to displacement is

(1)
$$\frac{\pi}{2\sqrt{2}}$$
 (2) $\frac{2\sqrt{2}}{\pi}$ (3) $\frac{\pi}{\sqrt{2}}$ (4) $\frac{\sqrt{2}}{\pi}$

9. A truck travelling due to North at 20 m/s turns East and travels at the same speed. The change in its velocity is

(1)
$$20\sqrt{2}$$
 m/sNorth – East
(2) $20\sqrt{2}$ m/sSouth – East
(3) $40\sqrt{2}$ m/sNorth – East
(4) $20\sqrt{2}$ m/sNorth – West

- A car travels a distance of 2000m. If the first half distance is covered at 40 km/hour and the second half at velocity v and if the average velocity is 48 km/hour then the value of v is
 (1) 56 km/hour
 (2) 60 km/hour
 (3) 50 km/hour
 (4) 48 km/hour
- **11.** A particle is moving with velocity 5 m/s towards east and its velocity changes to 5 m/s north in 10 sec. Find the acceleration.

(1)
$$\sqrt{2}N - W$$
 (2) $\frac{1}{\sqrt{2}}N - W$ (3) $\frac{1}{\sqrt{2}}N - E$ (4) $\sqrt{2}N - E$

12. The variation of velocity of a particle moving along straight line is shown in figure. The distance traversed by the body in 4 seconds is

- A particle moves with constant acceleration for 6 seconds after starting from rest. The distance travelled during the consecutive 2 seconds interval are in the ratio

 (1) 1:1:1
 (2) 1:2:3
 (3) 1:3:5
 (4) 1:5:9
- **14.** Two bodies of different masses ma and mb are dropped from two different heights, viz a and b. The ratio of times taken by the two to drop through these distance is

(1) a : b (2)
$$\frac{m_a}{m_b}$$
 : $\frac{b}{a}$ (3) \sqrt{a} : \sqrt{b} (4) a^2 : b^2

