

PHYSICS: WORK,POWER, ENERGY

DPP No. : 1

1. The relationship between force and position is shown in the figure given (in one dimensional case). The work done by the force in displacing a body from $x=1 \mathrm{~cm}$ to $x=5 \mathrm{~cm}$ is

(1) 20 ergs
(2) 60 ergs
(3) 70 ergs
(4) 700 ergs
2. A particle of mass m at rest is acted upon by a force F for a time t. Its kinetic energy after an interval t is :
(1) $\frac{F^{2} t^{2}}{m}$
(2) $\frac{F^{2} t^{2}}{2 m}$
(3) $\frac{F^{2} t^{2}}{3 m}$
(4) $\frac{\mathrm{Ft}}{2 \mathrm{~m}}$
3. A body starts from rest with uniform acceleration and acquires a velocity V in time T . The instantaneous kinetic energy of the body after any time t is proportional to :
(1) $(\mathrm{V} / \mathrm{T}) \mathrm{t}$
(2) $\left(\mathrm{V}^{2} / \mathrm{T}\right) \mathrm{t}^{2}$
(3) $\left(\mathrm{V}^{2} / \mathrm{T}^{2}\right) \mathrm{t}$
(4) $\left(V^{2} / T^{2}\right) t^{2}$
4. A rigid body of mass m is moving in a circle of radius r with a constant speed v. The force on the body is $\frac{m v^{2}}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the cirumference of the circle.
(1) $\frac{m v^{2}}{\pi r^{2}}$
(2) Zero
(3) $\frac{m v^{2}}{r^{2}}$
(4) $\frac{\pi r^{2}}{m v^{2}}$
5. A ball is released from the top of a tower. The ratio of work done by force of gravity in first, second and third second of the motion of the ball is
(1) $1: 2: 3$
(2) $1: 4: 9$
(3) $1: 3: 5$
(4) $1: 5: 3$
Encelling in IIT-JEE Since 2001...
6. Starting at rest, a 10 kg object is acted upon by only one force as indicated in figure. Then the total work done by the force is

(1) 90 J
(2) 125 J
(3) 245 J
(4) 490 J
7. A stone projected vertically up with a velocity u reaches a maximum height h. When it is at a height of $3 \mathrm{~h} / 4$ from the ground, the ratio of KE and PE at that point is : (consider PE $=0$ at the point of projectory)
(1) $1: 1$
(2) $1: 2$
(3) $1: 3$
(4) $3: 1$
8. An engine exerts a force $\vec{F}=(20 \hat{i}-3 \hat{j}+5 \hat{k}) \mathrm{N}$ and moves with velocity $\vec{v}=(6 \hat{i}+20 \hat{j}-3 \hat{k}) \mathrm{m} / \mathrm{s}$. The power of the engine (in watt) is :
(1) 45
(2) 75
(3) 20
(4) 10
9. A particle of mass M, starting from rest, undergoes uniform acceleration. If the speed acquired in time T is V, the power delivered to the particle is
(1) $\frac{M V^{2}}{T}$
(2) $\frac{1}{2} \frac{\mathrm{MV}^{2}}{\mathrm{~T}^{2}}$
(3) $\frac{M V^{2}}{T^{2}}$
(4) $\frac{1}{2} \frac{\mathrm{MV}^{2}}{\mathrm{~T}}$
10. A body is dropped from a certain height. When it loses U amount of its energy it acquires a velocity ' v '. The mass of the body is :
(1) $2 U / v^{2}$
(2) $2 v / U^{2}$
(3) $2 v / U$
(4) $U^{2} / 2 v$
